Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(E)-N'-(2,4-Dichlorobenzylidene)nicotinohydrazide

Xiao-Yang Qiu

Department of Chemistry, Fuyang Normal College, Fuyang Anhui 236041, People's Republic of China Correspondence e-mail: fuyanggiu_2007@126.com

Received 2 October 2007; accepted 25 October 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.047; wR factor = 0.127; data-to-parameter ratio = 13.2.

The title compound, $C_{13}H_9Cl_2N_3O$, displays a *trans* configuration with respect to the C—N double bond. The central portion of the molecule is planar to within 0.025 Å, and forms dihedral angles of 31.7 (3) and 32.0 (3)° with the dichlorobenzene and pyridine rings, respectively. N-H···O hydrogen bonds link the molecules into chains

Related literature

For related Schiff-base structures, see: Qiu, Fang, et al. (2006); Qiu, Luo, et al. (2006).

Experimental

Crystal data

 $\begin{array}{c} C_{13}H_{9}Cl_{2}N_{3}O & c \\ M_{r} = 294.13 & \beta \\ Monoclinic, P2_{1}/c & V \\ a = 4.7646 \ (6) \ \text{\AA} & Z \\ b = 25.075 \ (3) \ \text{\AA} & M \end{array}$

c = 11.9420 (12) Å $\beta = 111.081 (4)^{\circ}$ $V = 1331.3 (3) \text{ Å}^{3}$ Z = 4Mo $K\alpha$ radiation

```
\mu = 0.48 \text{ mm}^{-1}
T = 298 (2) K
```

Data collection

Bruker SMART APEX CCD	
diffractometer	
Absorption correction: multi-scan	
(SADABS; Sheldrick, 1996)	
$T_{\rm min} = 0.930, \ T_{\rm max} = 0.945$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ 173 parameters $wR(F^2) = 0.127$ H-atom parameters constrainedS = 0.85 $\Delta \rho_{max} = 0.21$ e Å⁻³2290 reflections $\Delta \rho_{min} = -0.19$ e Å⁻³

 $0.31 \times 0.12 \times 0.11 \text{ mm}$

7889 measured reflections 2290 independent reflections 1206 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.046$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2A\cdotsO1^{i}$	0.90	2.07	2.827 (3)	141

Symmetry code: (i) x - 1, y, z.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

The author thanks the Education Office of Anhui Province, People's Republic of China, for research grant No. 2006kj158B, and Fuyang Normal College for research grant No. 2007LZ02.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2245).

References

- Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Winconsin, USA.
- Qiu, X.-Y., Fang, X.-N., Yang, S.-L., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, 02687–02688.
- Qiu, X.-Y., Luo, Z.-G., Yang, S.-L. & Liu, W.-S. (2006). Acta Cryst. E62, 03531–03532.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o4524 [doi:10.1107/S1600536807053147]

(E)-N'-(2,4-Dichlorobenzylidene)nicotinohydrazide

X.-Y. Qiu

Comment

As an extension of our work on the structural characterization of Schiff-base compounds (Qiu, Fang *et al.*, 2006; Qiu, Luo *et al.*, 2006), the crystal structure of the title compound is reported here. In the molecule (Fig. 1), the C7=N3 bond length of 1.279 (3) Å conforms to the expected value for a double bond. The N2—C6 bond length of 1.341 (3) Å is between that expected for a single and a double bond, because of conjugation effects in molecule. The central portion of the molecule is planar to within 0.025 Å, and forms dihedral angles of 31.7 (3) and 32.0 (3) ° to the dichlorobenzene and pyridine rings, respectively. N—H…O hydrogen bonds link molecules into chains (Fig. 2).

Experimental

The reagents were commercial products used without further purification. 2,4-Dichlorobenzaldehyde (0.1 mmol, 17.5 mg) and nicotinohydrazide (0.1 mmol, 13.7 mg) were dissolved in ethanol (15 ml). The reaction mixture was stirred for 20 min to give a clear solution. After allowing the resulting clear solution to stand at room temperature in air for 10 d, large white crystals were formed at the bottom of the vessel on slow evaporation of the solvent. The crystals were isolated, washed three times with ethanol and dried in a vacuum desiccator over anhydrous CaCl₂ (yield 52%).

Refinement

All H were placed in geometrically idealized positions (C—H 0.93 Å N—H 0.90 Å), and constrained to ride on their parent atoms. They were treated as riding atoms, with $U_{iso}(H) = 1.2U_{eq}(C/N)$.

Figures

Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at 30% probability for non-H atoms.

Fig. 2. Packing diagram, viewed approximately along the *a* axis. Dashed lines show N—H…O hydrogen bonds.

(E)-N'-(2,4-Dichlorobenzylidene)nicotinohydrazide

Crystal data	
C ₁₃ H ₉ Cl ₂ N ₃ O	$F_{000} = 600$
$M_r = 294.13$	$D_{\rm x} = 1.468 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 1785 reflections
a = 4.7646 (6) Å	$\theta = 4.2 - 25^{\circ}$
<i>b</i> = 25.075 (3) Å	$\mu = 0.48 \text{ mm}^{-1}$
c = 11.9420 (12) Å	T = 298 (2) K
$\beta = 111.081 \ (4)^{\circ}$	Block, white
$V = 1331.3 (3) \text{ Å}^3$	$0.31\times0.12\times0.11~mm$
Z = 4	

Data collection

Bruker SMART APEX CCD diffractometer	2290 independent reflections
Radiation source: fine-focus sealed tube	1206 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.046$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -5 \rightarrow 5$
$T_{\min} = 0.930, \ T_{\max} = 0.945$	$k = -29 \rightarrow 29$
7889 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.047$	$w = 1/[\sigma^2(F_o^2) + (0.0774P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.127$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 0.85	$\Delta \rho_{max} = 0.21 \text{ e } \text{\AA}^{-3}$
2290 reflections	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$
173 parameters	Extinction correction: SHELXTL (Bruker, 1997), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.014 (3)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cl1	-0.2420 (2)	0.95073 (3)	0.62765 (8)	0.0809 (4)
C12	0.3137 (2)	1.13761 (3)	0.63521 (9)	0.1026 (4)
01	1.0158 (5)	0.84278 (8)	1.04441 (19)	0.0712 (6)
C3	0.6738 (9)	0.68767 (13)	1.2109 (3)	0.0718 (9)
H3	0.6556	0.6573	1.2523	0.086*
N2	0.5113 (5)	0.85361 (8)	0.9690 (2)	0.0564 (6)
H2A	0.3301	0.8402	0.9613	0.068*
N3	0.5329 (6)	0.90164 (9)	0.9153 (2)	0.0571 (6)
C1	0.7164 (6)	0.77671 (11)	1.0901 (3)	0.0496 (7)
C2	0.9336 (7)	0.76173 (13)	1.1980 (3)	0.0687 (9)
H2	1.1026	0.7833	1.2295	0.082*
N1	0.9163 (7)	0.71808 (11)	1.2600 (2)	0.0794 (8)
C4	0.4503 (8)	0.69823 (12)	1.1037 (3)	0.0716 (9)
H4	0.2882	0.6751	1.0727	0.086*
C5	0.4689 (7)	0.74424 (11)	1.0413 (3)	0.0610 (8)
Н5	0.3185	0.7528	0.9686	0.073*
C6	0.7634 (7)	0.82730 (11)	1.0325 (2)	0.0515 (7)
C7	0.2834 (7)	0.92486 (11)	0.8581 (2)	0.0576 (8)
H7	0.1019	0.9090	0.8520	0.069*
C8	0.2873 (7)	0.97689 (10)	0.8022 (3)	0.0540 (7)
C9	0.0573 (6)	0.99328 (11)	0.6987 (3)	0.0584 (8)
C10	0.0620(7)	1.04245 (11)	0.6468 (3)	0.0672 (9)
H10	-0.0945	1.0528	0.5775	0.081*
C11	0.3031 (8)	1.07572 (11)	0.6999 (3)	0.0692 (9)
C12	0.5376 (8)	1.06099 (12)	0.8028 (3)	0.0691 (9)
H12	0.6994	1.0838	0.8378	0.083*
C13	0.5272 (7)	1.01154 (11)	0.8527 (3)	0.0660 (9)
H13	0.6848	1.0013	0.9217	0.079*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

U	1 U ²²	U^{33}	U^{12}	U^{13}	U^{23}

supplementary materials

C11	0.0815 (7)	0.0744 (6)	0.0757 (6)	-0.0159 (5)	0.0149 (5)	0.0034 (4)
Cl2	0.1464 (10)	0.0508 (5)	0.1095 (8)	-0.0097 (5)	0.0445 (7)	0.0140 (5)
01	0.0508 (14)	0.0715 (14)	0.0928 (17)	-0.0066 (11)	0.0277 (12)	0.0013 (11)
C3	0.089 (3)	0.057 (2)	0.075 (2)	0.0097 (19)	0.037 (2)	0.0134 (18)
N2	0.0482 (15)	0.0513 (14)	0.0742 (17)	-0.0030 (12)	0.0272 (12)	0.0118 (12)
N3	0.0631 (17)	0.0467 (14)	0.0654 (16)	-0.0030 (12)	0.0279 (13)	0.0034 (12)
C1	0.0438 (18)	0.0500 (17)	0.0556 (18)	0.0033 (14)	0.0188 (14)	0.0014 (14)
C2	0.060 (2)	0.075 (2)	0.064 (2)	-0.0036 (18)	0.0132 (16)	0.0023 (18)
N1	0.083 (2)	0.0792 (19)	0.0690 (19)	0.0032 (17)	0.0181 (16)	0.0188 (16)
C4	0.077 (2)	0.0484 (18)	0.087 (3)	-0.0103 (16)	0.027 (2)	-0.0019 (17)
C5	0.062 (2)	0.0508 (17)	0.0633 (19)	0.0019 (16)	0.0145 (16)	0.0039 (15)
C6	0.0459 (19)	0.0558 (18)	0.0528 (18)	-0.0001 (16)	0.0178 (14)	-0.0036 (14)
C7	0.060 (2)	0.0501 (17)	0.065 (2)	-0.0054 (16)	0.0250 (16)	0.0033 (15)
C8	0.0603 (19)	0.0478 (16)	0.0581 (18)	0.0012 (15)	0.0262 (15)	0.0004 (14)
C9	0.062 (2)	0.0500 (17)	0.0648 (19)	-0.0034 (15)	0.0248 (16)	-0.0013 (15)
C10	0.079 (2)	0.0532 (19)	0.071 (2)	0.0036 (18)	0.0290 (18)	0.0064 (16)
C11	0.096 (3)	0.0437 (17)	0.078 (2)	-0.0004 (18)	0.043 (2)	0.0040 (16)
C12	0.085 (2)	0.0523 (19)	0.074 (2)	-0.0170 (17)	0.034 (2)	-0.0102 (17)
C13	0.076 (2)	0.0513 (18)	0.068 (2)	-0.0079 (17)	0.0237 (17)	-0.0008 (16)

Geometric parameters (Å, °)

Cl1—C9	1.738 (3)	C4—C5	1.393 (4)
Cl2—C11	1.743 (3)	C4—H4	0.930
O1—C6	1.222 (3)	С5—Н5	0.930
C3—N1	1.331 (4)	C7—C8	1.469 (4)
C3—C4	1.365 (4)	С7—Н7	0.930
С3—Н3	0.930	C8—C9	1.387 (4)
N2—C6	1.341 (3)	C8—C13	1.389 (4)
N2—N3	1.385 (3)	C9—C10	1.383 (4)
N2—H2A	0.900	C10-C11	1.376 (4)
N3—C7	1.279 (3)	С10—Н10	0.930
C1—C5	1.378 (4)	C11—C12	1.381 (4)
C1—C2	1.383 (4)	C12—C13	1.384 (4)
C1—C6	1.498 (4)	C12—H12	0.930
C2—N1	1.341 (4)	С13—Н13	0.930
С2—Н2	0.930		
N1—C3—C4	124.3 (3)	N2—C6—C1	115.1 (3)
N1—C3—H3	117.9	N3—C7—C8	119.1 (3)
С4—С3—Н3	117.9	N3—C7—H7	120.5
C6—N2—N3	119.3 (2)	С8—С7—Н7	120.5
C6—N2—H2A	120.9	C9—C8—C13	117.7 (3)
N3—N2—H2A	120.4	C9—C8—C7	122.2 (3)
C7—N3—N2	115.7 (2)	C13—C8—C7	120.1 (3)
C5—C1—C2	118.3 (3)	С10—С9—С8	121.9 (3)
C5—C1—C6	123.5 (3)	C10-C9-Cl1	118.1 (2)
C2—C1—C6	118.2 (3)	C8—C9—Cl1	120.0 (2)
N1—C2—C1	124.2 (3)	C11—C10—C9	118.6 (3)
N1—C2—H2	117.9	С11—С10—Н10	120.7

C1—C2—H2	117.9	С9—С10—Н10	120.7
C3—N1—C2	116.1 (3)	C10—C11—C12	121.5 (3)
C3—C4—C5	118.9 (3)	C10-C11-Cl2	119.2 (3)
C3—C4—H4	120.5	C12—C11—Cl2	119.3 (3)
C5—C4—H4	120.5	C11—C12—C13	118.7 (3)
C1—C5—C4	118.2 (3)	C11—C12—H12	120.7
С1—С5—Н5	120.9	C13—C12—H12	120.7
С4—С5—Н5	120.9	C12—C13—C8	121.7 (3)
O1—C6—N2	123.6 (3)	С12—С13—Н13	119.2
O1—C6—C1	121.3 (3)	C8—C13—H13	119.2
C6—N2—N3—C7	-178.8 (2)	N3—C7—C8—C9	149.4 (3)
C5—C1—C2—N1	-1.6 (5)	N3-C7-C8-C13	-30.4 (4)
C6—C1—C2—N1	178.6 (3)	C13—C8—C9—C10	-0.5 (4)
C4—C3—N1—C2	0.4 (5)	C7—C8—C9—C10	179.7 (3)
C1—C2—N1—C3	1.2 (5)	C13—C8—C9—Cl1	177.4 (2)
N1—C3—C4—C5	-1.5 (5)	C7—C8—C9—Cl1	-2.4 (4)
C2—C1—C5—C4	0.4 (4)	C8—C9—C10—C11	0.2 (4)
C6—C1—C5—C4	-179.8 (3)	Cl1—C9—C10—C11	-177.8 (2)
C3—C4—C5—C1	1.0 (5)	C9-C10-C11-C12	0.1 (5)
N3—N2—C6—O1	-1.5 (4)	C9—C10—C11—Cl2	179.6 (2)
N3—N2—C6—C1	178.1 (2)	C10-C11-C12-C13	0.0 (5)
C5—C1—C6—O1	-148.3 (3)	Cl2—C11—C12—C13	-179.5 (2)
C2-C1-C6-O1	31.4 (4)	C11—C12—C13—C8	-0.3 (5)
C5-C1-C6-N2	32.1 (4)	C9—C8—C13—C12	0.5 (4)
C2-C1-C6-N2	-148.2 (3)	C7—C8—C13—C12	-179.6 (3)
N2—N3—C7—C8	177.9 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N2—H2A···O1 ⁱ	0.90	2.07	2.827 (3)	141
Symmetry codes: (i) x -1, y , z .				

